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Introduction

A Hidden Markov Model (HMM) A\ is specified as a triplet (A4, B, w) where:

e The number of hidden states is N and they are specified as the set S =
{S0,51, ..., Sny—1}. The state at time ¢ is represented as g;.

e The number of observation symbols is M and they are specified as the set
V= {’Uo, ~--7'UM—1}-

e The state transition probability distribution matrix A is a matrix of di-
mensions N x N. The element a;; of the matrix A is the probability of
transitioning from state S; to state S;.

e The emission probability distribution matrix B is a matrix of dimensions
N x M. The element b;(k) of the matrix B is the probability of emitting
observation symbol v, from state 5.

e The probability distribution for the initial state is specified by the vector
m = {m;} where pi; is the probability of being in state S; at time ¢t = 0.

Given an observation sequence O of observation symbols from the set V', the
learning problem is to adjust the model parameters A such that the probabil-
ity P(O|)) is maximized. Baum-Welch algorithm provides a solution for the
training problem.

Baum-Welch Algorithm

Baum-Welch algorithm is an Expectation-Maximization (EM) algorithm which
computes the maximum likelihood estimate of the parameters of HMM given a
set of observation sequences. It is an iterative algorithm where in each itera-
tion it computes the forward variables and backward variables and uses these
variables to update the model parameters so that P(O|\) > P(O|)\) where ) is
the model with the updated parameters. The algorithm iterates until the model
parameters converge.



Forward Variables

For an observation sequence of O length T, that is, O = (Oq...Or_1), the
forward variables are defined as

ai(i) = P(00;...04,q: = Si|A), 0<i<N—-1, 0<t<T-1

which is the probability of the partial observation sequence OyO;...O¢ up to
time t and state S; at time ¢, given the model A. The forward variables are
computed by inductively as follows:

e Initialization:
Oéo(i) = Wibi(OQ), O S Z S N — 1

e Induction:
N-1

aip1(f) = lz o (i)ai;
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bj(O¢y1), 0<t<T-2, 0<j<N-1

Backward Variables

The backward variable 3;(#) is the probability of the partial observation sequence
from time t 4+ 1 to the end 7' — 1 given the HMM is in state S; at time ¢ and
the model .

Bi(i) = P(O¢41...07_1|qt = Si,\), 0<i<N-1, 0<t<T-1
The backward variables are computed inductively as follows.
e Initialization:
Br-1(i)=1, 0<i<N-1

e Induction:
N—

,_.

an]OH_lBH_l() OStST—Q, OSZSN—I
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Gamma and Xi Variables

The gamma variable v;(7) is the probability of being in state S; at time ¢ given
the observation sequence O and the model A.

fmazpwf;moAy=ﬁ$$?0<i<N—L 0<t<T—1

The xi variable & (4, j) is the probability of being in state S; at time ¢ and in
state S; at time ¢ 4 1 given the model A and the observation sequence O.

at(1)aijb; (O 11B84+1(5)

&(1,5) = P(qr = Si, 1 = Sj10,\) = PO

where

0<i<N-1, 0<j<N-1, 0<t<T-1



Probability of an observation sequence

The probability of an observation sequence O of length T' given a model X is
computed as follows.

P(O[) = ZQT !

Update of Model Parameters

The sum of gamma variables for a particular state i, that is the expression
ZZ:OQ ~¢(i) can be interpreted as the expected number of times that the state
S; is visited given the model parameters and the observation sequence O. And,
the summation of Xi variables ZtT;()z &:1(1,7) can be interpreted as the expected
number of transitions from state S; to state S;. Hence the ratio of the latter
over the former is the updated probability of transition from state .S; to state .S;.
Thus, an iteration of Baum-Welch algorithm adjusts the parameters as below.

e Initial Probabilities Vector

7_T'i:’)/0(i), OSZSNfl

e State Transition Probability Distribution

S ¥ring AUF)
TSR )

e Emission Probability Distribution

; 0<i<N-1, 0<j<N-1

Zf oo, - Ye(d)
Et 0 ’Yt(')

bj(k) = 0<j<N-1, 0<k<M-1
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Numerical Stability and Scaling

The value of a forward variable ay(i) quickly tends to zero as the value of ¢
becomes large. The solution to this problem is to scale the forward variables
at each induction step. One common scaling scheme (as described in [1] ) is to
define a scaling factor which depends only on time ¢ but is independent of the
state ¢ as described below. The scaled forward variables ¢ (z) and the scaling
factors ¢; are computed by induction as follows.

e Initialization

do(i) =ap(i) 0<i< N -1
1
Yty doli)

(3[0(2) :COO(()(.) OSiSN—l

Co =



e Induction
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G (1) = di—1(7)a;jibi(Or)
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To compute the scaled backward variables ﬁt(z), the same scaling factors which
are computed for the sacled forward variables are used.

e Initialization
BT—1(Z') =
BTfl(Z.) = cr_1Br-1(3)

e Induction

N—
- Z agz Ot+1)
7=0

Bi(i) = e (i)

Probability of an observation sequence with scaled
variables

The probability of an observation sequence O given a model A is computed as
follows.

t
Ct = H Cr
7=0
P(O|N) = 1/Cr_4

Using the scaled forward and backward parameters the model parameters are
adjusted as follows.

e Initial Probabilities Vector
7, = (i) Bo(i) /o
e State Transition Probability Distribution
Gy = Yoo Ga(i ) aijb; (OAt-Q—.l)-Bt-&-l(j)
Zt 0 @t( )-Be(1)/ct
e Emission Probability Distribution
Zt oo, o Qt(J )-Bi(3)/ct
Yo Gi(7)-Bi(d) /e

bj(k) =



Training with Multiple Observation Sequences

Suppose we have L independent observation sequences where the observation
sequence indexed by [ is denoted by O; and 0 <[ < L — 1. In order to update
the parameters of the model (as described in [3]), we need to do the following.

e Starting probabilities From each observation sequence, compute the ex-
pected number of times in each state at time ¢t = 0. For each state ¢,
we can compute the sum of expected number of times in that state at
time ¢ = 0 from all the sequences. From this we can update the initial
probabilities vector.

e Expected number of transitions From each observation sequence, compute
the expected number of times of transition from state i to state j. For each
ordered pair of states (i,7), we can compute the sum of expected number
of times of transition from state ¢ to state j due to all sequences. Once we
compute the sums of transitions for row i of the transition matrix, we can
update that row of the transition matrix by computing the total number
of times visiting state

e Expected number of emissions From each observation sequence, compute
the expected number of times being in state ¢ and emitting symbol j. For
each state ¢ and symbol j, we can compute the total number of times
being in state ¢ and emitting symbol j from all sequences. Each row of
the emission matrix can be updated by computing the total number times
visiting that row.

The parameters are updated as follows.

e Initial Probabilities Vector

P Yo obh(i)B(i)/PO'N)
' L

e State Transition Probability Distribution

Et o at( a’ljbj( O} )3£+1(j)/P(OZ|/\)
o g el )5t+1(’)/P(Ol|)\)

Q5 =

e Emission Probability Distribution

b (k) = Zt 0.0,= vkd (7)-B4(j)/ P(O'|\)
J TSI T G)BHG) PO

If we are using the scaled forward and backward variables, then the update
equations are as follows.



e Initial Probabilities Vector

__ Xl ab(0)BY0)/ch
! L

e State Transition Probability Distribution

G = Zt 0 at( i)a;jb; (O t+1)3t+1( /)
Zt 0 O‘t( )Bt+1( j)/ct!

e Emission Probability Distribution

- Zt L=V é( )5 é( )/Ct
bilh) = = 00”( >é<>/

=0 t=0

Distributed Training in Samsara

The current implementation of distributed training of HMM in Samsara is based
on the HMM training in MapReduce described in [2]. During each iteration of
Baum-Welch algorithm, each node in a cluster works on a block of independent
observation sequences. Each node in the cluster executes the following steps for
each observation sequence in the block.

e Compute forward variables matrix of dimensions T'/timesN where T is the
length of the observation sequence. The forward variables can be either
scaled or not.

e Compute backward variables matrix of dimensions T'/timesN where T is
the length of the observation sequence. If the forward variables were scaled
in the previous step, then use the same scaling factors to scale backward
variables too.

e For each state i, compute the expected number of times being in that state
at time ¢ = 0.

e For each state i, compute the expected number of transitions from the
state to every state j where 0 < j < N — 1.

e For each state 7, compute the expected number of emissions of symbol k
where 0 < k < M — 1.

The mapBlock operator transforms a block of observation sequences (which is
a matrix with R rows representing a subset of R observation sequences) into a
matrix of shape R x (N + N? + N % M).Each row in the input block (which is
an independent observation sequence) is mapped to a row in the output block
with (N 4+ N2+ N x M) columns as described below. The first N columns of the
output row contain the values vy(7),0 < i < N —1 which are the probabilities of
starting in state i for each of the IV states. The next N? columns store the row



major representation of the NV x N matrix which contains the expected transition
counts. The element e;; of this matrix is the expected number of transitions
from state i to state j given the observation sequence. The last NV * M columns
of the output block matrix store the row major representation of the N x M
matrix of expected emission counts. The element f;; of this matrix contains
the expected number of times the symbol j is emitted from state i given the
observation sequence. When all the blocks of the input DRM of observation
sequences are processed, the parameters of the model are updated as follows.

e To update the initial probabilities vector, compute the total count of ex-
pected number of times of being in state ¢ at time t = 0 for all 0 < N — 1.
The element m; is calculated as the ratio of the total count of expected
number of times of being in state i at time ¢ = 0 and the sum of counts
for all states.

e State Transition Probability Distribution To update row i of the transition
matrix, for each element a;; we need to compute the cumulative expected
number of transitions from state i to state j from all the observation
sequences. The sum of all these cumulative expected number of transitions
gives us the total expected number of times the state i is visited. If we
divide the cumulative expected number of transitions from state ¢ to state
j from all the observation sequences by the total expected number of
times the state ¢ is visited, we get the updated probability of transition
from state ¢ to state j.

e Emission Probability Distribution To update row j of the emission ma-
trix, for each element b;(k), we need to compute the cumulative expected
number of times the symbol k is emitted while being in state j from all the
observation sequences. The sum of all these cumulative expected number
of emissions gives us the total expected number of times the state j is
visited. If we divide the cumulative expected number of emissions from
state j of symbol k£ by the total expected number of times the state j is
visited, we get the updated probability of emission from state j of symbol
k.
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