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Introduction

A Hidden Markov Model (HMM) � is specified as a triplet (A,B,⇡) where:

• The number of hidden states is N and they are specified as the set S =
{S0, S1, ..., SN�1}. The state at time t is represented as qt.

• The number of observation symbols is M and they are specified as the set
V = {v0, ..., vM�1}.

• The state transition probability distribution matrix A is a matrix of di-
mensions N ⇥ N . The element aij of the matrix A is the probability of
transitioning from state Si to state Sj .

• The emission probability distribution matrix B is a matrix of dimensions
N ⇥M . The element bj(k) of the matrix B is the probability of emitting
observation symbol vk from state Sj .

• The probability distribution for the initial state is specified by the vector
⇡ = {⇡i} where pii is the probability of being in state Si at time t = 0.

Given an observation sequence O of observation symbols from the set V , the
learning problem is to adjust the model parameters � such that the probabil-
ity P (O|�) is maximized. Baum-Welch algorithm provides a solution for the
training problem.

Baum-Welch Algorithm

Baum-Welch algorithm is an Expectation-Maximization (EM) algorithm which
computes the maximum likelihood estimate of the parameters of HMM given a
set of observation sequences. It is an iterative algorithm where in each itera-
tion it computes the forward variables and backward variables and uses these
variables to update the model parameters so that P (O|�̄) > P (O|�) where �̄ is
the model with the updated parameters. The algorithm iterates until the model
parameters converge.

1



Forward Variables

For an observation sequence of O length T , that is, O = (O0...OT�1), the
forward variables are defined as

↵t(i) = P (O0O1...Ot, qt = Si|�), 0  i  N � 1, 0  t  T � 1

which is the probability of the partial observation sequence O0O1...Ot up to
time t and state Si at time t, given the model �. The forward variables are
computed by inductively as follows:

• Initialization:

↵0(i) = ⇡ibi(O0), 0  i  N � 1

• Induction:

↵t+1(j) =

"
N�1X

i=0

↵t(i)aij

#
bj(Ot+1), 0  t  T � 2, 0  j  N � 1

Backward Variables

The backward variable �t(i) is the probability of the partial observation sequence
from time t + 1 to the end T � 1 given the HMM is in state Si at time t and
the model �.

�t(i) = P (Ot+1...OT�1|qt = Si,�), 0  i  N � 1, 0  t  T � 1

The backward variables are computed inductively as follows.

• Initialization:

�T�1(i) = 1, 0  i  N � 1

• Induction:

�t(i) =
N�1X

j=0

aijbj(Ot+1)�t+1(j), 0  t  T � 2, 0  i  N � 1.

Gamma and Xi Variables

The gamma variable �t(i) is the probability of being in state Si at time t given
the observation sequence O and the model �.

�t(i) = P (qt = Si|O,�) =
↵t(i)�t(i)

P (O|�) 0  i  N � 1, 0  t  T � 1

The xi variable ⇠t(i, j) is the probability of being in state Si at time t and in
state Sj at time t+ 1 given the model � and the observation sequence O.

⇠t(i, j) = P (qt = Si, qt+1 = Sj |O,�) =
↵t(i)aijbj(Ot+1�t+1(j)

P (O|�)
where

0  i  N � 1, 0  j  N � 1, 0  t  T � 1
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Probability of an observation sequence

The probability of an observation sequence O of length T given a model � is
computed as follows.

P (O|�) =
N�1X

i=0

↵T�1(i)

Update of Model Parameters

The sum of gamma variables for a particular state i, that is the expressionPT�2
t=0 �t(i) can be interpreted as the expected number of times that the state

Si is visited given the model parameters and the observation sequence O. And,
the summation of Xi variables

PT�2
t=0 ⇠t(i, j) can be interpreted as the expected

number of transitions from state Si to state Sj . Hence the ratio of the latter
over the former is the updated probability of transition from state Si to state Sj .
Thus, an iteration of Baum-Welch algorithm adjusts the parameters as below.

• Initial Probabilities Vector

⇡̄i = �0(i), 0  i  N � 1

• State Transition Probability Distribution

āij =

PT�2
t=0 ⇠t(i, j)PT�2
t=0 �t(i)

, 0  i  N � 1, 0  j  N � 1

• Emission Probability Distribution

b̄j(k) =

PT�1
t=0,Ot=vk

�t(j)
PT�1

t=0 �t(j)
, 0  j  N � 1, 0  k  M � 1

Numerical Stability and Scaling

The value of a forward variable ↵t(i) quickly tends to zero as the value of t
becomes large. The solution to this problem is to scale the forward variables
at each induction step. One common scaling scheme (as described in [1] ) is to
define a scaling factor which depends only on time t but is independent of the
state i as described below. The scaled forward variables ↵̈t(i) and the scaling
factors ct are computed by induction as follows.

• Initialization

↵̈0(i) = ↵0(i) 0  i  N � 1

c0 =
1

PN�1
i=0 ↵̈0(i)

↵̂0(i) = c0↵̈0(i) 0  i  N � 1
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• Induction

↵̈t(i) =
N�1X

j=0

↵̂t�1(j)ajibi(Ot)

ct =
1

PN�1
i=0 ↵̈t(i)

↵̂t(i) = ct↵̈0(i) 0  i  N � 1

To compute the scaled backward variables �̈t(i), the same scaling factors which
are computed for the sacled forward variables are used.

• Initialization

�̈T�1(i) = 1

�̂T�1(i) = cT�1�̈T�1(i)

• Induction

�̈t(i) =
N�1X

j=0

�̂t+1(j)ajibi(Ot+1)

�̂t(i) = ct�̈t(i)

Probability of an observation sequence with scaled
variables

The probability of an observation sequence O given a model � is computed as
follows.

Ct =
tY

⌧=0

c⌧

P (O|�) = 1/CT�1

Using the scaled forward and backward parameters the model parameters are
adjusted as follows.

• Initial Probabilities Vector

⇡̄i = ↵̂0(i)�̂0(i)/c0

• State Transition Probability Distribution

āij =

PT�2
t=0 ↵̂t(i).aijbj(Ot+1).�̂t+1(j)PT�2

t=0 ↵̂t(i).�̂t(i)/ct

• Emission Probability Distribution

b̄j(k) =

PT�1
t=0,Ot=vk

↵̂t(j).�̂t(j)/ct
PT�1

t=0 ↵̂t(j).�̂t(j)/ct
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Training with Multiple Observation Sequences

Suppose we have L independent observation sequences where the observation
sequence indexed by l is denoted by Ol and 0  l  L � 1. In order to update
the parameters of the model (as described in [3]), we need to do the following.

• Starting probabilities From each observation sequence, compute the ex-
pected number of times in each state at time t = 0. For each state i,
we can compute the sum of expected number of times in that state at
time t = 0 from all the sequences. From this we can update the initial
probabilities vector.

• Expected number of transitions From each observation sequence, compute
the expected number of times of transition from state i to state j. For each
ordered pair of states (i, j), we can compute the sum of expected number
of times of transition from state i to state j due to all sequences. Once we
compute the sums of transitions for row i of the transition matrix, we can
update that row of the transition matrix by computing the total number
of times visiting state

• Expected number of emissions From each observation sequence, compute
the expected number of times being in state i and emitting symbol j. For
each state i and symbol j, we can compute the total number of times
being in state i and emitting symbol j from all sequences. Each row of
the emission matrix can be updated by computing the total number times
visiting that row.

The parameters are updated as follows.

• Initial Probabilities Vector

⇡̄i =

PL�1
l=0 ↵l

0(i)�
l
0(i)/P (Ol|�)
L

• State Transition Probability Distribution

āij =

PL�1
l=0

PTl�2
t=0 ↵l

t(i)aijbj(O
l
t+1)�

l
t+1(j)/P (Ol|�)

PL�1
l=0

PTl�2
t=0 ↵l

t(i)�
l
t+1(j)/P (Ol|�)

• Emission Probability Distribution

b̄j(k) =

PL�1
l=0

PTl�1
t=0,Ot=vk

↵̂l
t(j).�̂

l
t(j)/P (Ol|�)

PL�1
l=0

PTl�1
t=0 ↵l

t(j)�
l
t(j)/P (Ol|�)

If we are using the scaled forward and backward variables, then the update
equations are as follows.
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• Initial Probabilities Vector

⇡̄i =

PL�1
l=0 ↵̂l

0(i)�̂
l
0(i)/c

l
0

L

• State Transition Probability Distribution

āij =

PL�1
l=0

PTl�2
t=0 ↵̂l

t(i)aijbj(O
l
t+1)�̂

l
t+1(j)PL�1

l=0

PTl�2
t=0 ↵̂l

t(i)�̂
l
t+1(j)/ct

l

• Emission Probability Distribution

b̄j(k) =

PL�1
l=0

PTl�1
t=0,Ot=vk

↵̂l
t(j)�̂

l
t(j)/c

l
t

PL�1
l=0

PTl�1
t=0 ↵̂l

t(j)�̂
l
t(j)/c

l
t

Distributed Training in Samsara

The current implementation of distributed training of HMM in Samsara is based
on the HMM training in MapReduce described in [2]. During each iteration of
Baum-Welch algorithm, each node in a cluster works on a block of independent
observation sequences. Each node in the cluster executes the following steps for
each observation sequence in the block.

• Compute forward variables matrix of dimensions T/timesN where T is the
length of the observation sequence. The forward variables can be either
scaled or not.

• Compute backward variables matrix of dimensions T/timesN where T is
the length of the observation sequence. If the forward variables were scaled
in the previous step, then use the same scaling factors to scale backward
variables too.

• For each state i, compute the expected number of times being in that state
at time t = 0.

• For each state i, compute the expected number of transitions from the
state to every state j where 0  j  N � 1.

• For each state i, compute the expected number of emissions of symbol k
where 0  k  M � 1.

The mapBlock operator transforms a block of observation sequences (which is
a matrix with R rows representing a subset of R observation sequences) into a
matrix of shape R ⇥ (N +N2 +N ⇤M).Each row in the input block (which is
an independent observation sequence) is mapped to a row in the output block
with (N +N2+N ⇤M) columns as described below. The first N columns of the
output row contain the values �0(i), 0  i  N�1 which are the probabilities of
starting in state i for each of the N states. The next N2 columns store the row
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major representation of theN⇥N matrix which contains the expected transition
counts. The element eij of this matrix is the expected number of transitions
from state i to state j given the observation sequence. The last N ⇤M columns
of the output block matrix store the row major representation of the N ⇥ M
matrix of expected emission counts. The element fij of this matrix contains
the expected number of times the symbol j is emitted from state i given the
observation sequence. When all the blocks of the input DRM of observation
sequences are processed, the parameters of the model are updated as follows.

• To update the initial probabilities vector, compute the total count of ex-
pected number of times of being in state i at time t = 0 for all 0  N � 1.
The element ⇡i is calculated as the ratio of the total count of expected
number of times of being in state i at time t = 0 and the sum of counts
for all states.

• State Transition Probability Distribution To update row i of the transition
matrix, for each element aij we need to compute the cumulative expected
number of transitions from state i to state j from all the observation
sequences. The sum of all these cumulative expected number of transitions
gives us the total expected number of times the state i is visited. If we
divide the cumulative expected number of transitions from state i to state
j from all the observation sequences by the total expected number of
times the state i is visited, we get the updated probability of transition
from state i to state j.

• Emission Probability Distribution To update row j of the emission ma-
trix, for each element bj(k), we need to compute the cumulative expected
number of times the symbol k is emitted while being in state j from all the
observation sequences. The sum of all these cumulative expected number
of emissions gives us the total expected number of times the state j is
visited. If we divide the cumulative expected number of emissions from
state j of symbol k by the total expected number of times the state j is
visited, we get the updated probability of emission from state j of symbol
k.
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